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Abstract

We discussselectedaspectsof a new parallelthree-dimensional(3-D) computational
tool for the unstructuredmesh simulationof Los Alamos NationalLaboratory (LANL)
casting processes. This tool, known as Telluride, draws upon robust, high resolution
finite volume solutions of metal alloy mass, momentum, and enthalpy conservation
equations to model the filling, cooling, and solidificationof LANL castings. We briefly
describe the current Telluride physical models and solution methods, then detail
our parallelization strategy as implemented with Fortran 90 (F90). This strategy
has yielded straightforward and efiicient parallelization on distributed and shared
memory architectures,aided in large part by new parallel librariesJTpack90 [21] for
Krylov-subspace iterativesolution methods and P GSLib [7] for efficientgather/scatter
operations. We illustrate our methodology and current capabilities with source code
examples and parallelefficiency resultsfor a LANL casting simulation.
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We

Introduction

are currently pursuing the development of a comprehensive and robust casting
simulation tool, known as Telluride [12], which is being designed to model the molten”
fluid flow, heat flow, solidification, species transport, and interface dynamics present in
metal alloy casting processes at LANL foundries. To be value-added, Telluride must
not only integrate all these relevant physical processes, it must also incorporate the latest
advances in numerical algorithms and solidification theory. In addition, the computational
resources commanded by casting process simulation necessitate efficient parallel execution
on current high performance computing archltectures.

Driven by increasing demands on quality and control of microstructure, solidification
theory and modeling provide the basis for influencing microstructure and improving the
qualityofcastproducts.Forexample,a common occurrenceincastingsisthelocalvariation

ofmicrostructure,which can resultincompositionaland propertyvariationthroughoutthe

entirepart.Such defectsaredifficulttoelirninate oncetheyarecastintothepart,tending

to persisteven afterfinalforming.We anticipatethatTelluride will have the potential

to improve castingpractices,reducefoundrycosts,and providea means to advance the

theoryand understandingofalloysolidification.
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2 Physical Model and Solution Method

A realistic model for metal alloy casting processes requires descriptions for many physical
phenomena: incompressible free surface flow of the molten metal during the fill process,
interracial surface tension at the molten metal free surface, solidification and melting phase
change rates of multiple species alloys possessing an arbitrary phase diagram, alloy species
liquid and solid phase transport, and microscopic mushy zone effects, to name a few. We
follow the methodology of Beckermann [3], in which alloy species mass, momentum, and
energy equations are volume-averaged in a traditional multiphase approach.

Met al alloy mass, momentum, and energy transport is modeled with a simplified version
of the volume-averaged twe-phase model of Beckermann [17, 3]. In formulating the model
equations, we currently assume that the solid phase is stationary, the solid and liquid
phases are in thermal equilibrium, liquid species concentrations are equal to their interracial
averages, and finite-rat e macroscopic species diffusion is negligible. See [18] for details of
the current Telluride alloy solidification models.

Our incompressible flow algorithm builds upon our past work on two-dimensional free
surface flows [11] having interracial surface tension [5]. We have increased the algorithm
accuracy and robustness by incorporating the advances of Bell and coworkers [4] in devising
high resolution projection method solutions of the Navier-Stokes equations coupled with
modern interface tracking algorithms. This. approach has yielded high-fidelity flow solutions
that are fully second-order in time and space [19].

We have extended projection-based Navier-Stokes solution methods to 3-D unstructured
grids without unnecessarily sacrificing robustness, accuracy, or efficiency. our current
approach has borrowed from the innovative techniques of Barth [1], an example being
least-squares reconstruction schemes. We have also extended a 3-D unsplit advection
technique [20] to unstructured meshes, which has allowed consistent use of high-order
monotone advection in incompressible flows.

Finally, we have extended our volume tracking algorithms to 3-D generalized hexahedral
grids [13]. Interfaces are tracked on generalized hexahedral meshes and localized over a one
cell width for each time step. Interfaces are assumed to be locally planar within each cell,
giving a globally piecewise planar approximation to the actual interface topology.

3 Software Design Issues

We now discuss our software design philosophies and goals and our implementation using
object-based F90 [6]. We also discuss briefly our coordination of a development team tasked
to engineer efficient software within stringent project constraints [16].

3.1 Design Philosophy

Many important decisions confronted while engineering the Telluride software have
been guided by our principal design goals of seamless portability, functionally-based
modularity, and efficient parallelism. Since current architectures change on a yearly basis,
software longevity will not be realized if design and implementation is targeted toward
efficient execution on a specific architecture. The Telluride software has therefore been
implemented in strict adherence to a language standard, chosen to be F90. By commiting
to languages that have formal standards, software portability can be realized if compiler
availabilityy is widespread and reliabilityy is high. To date, our commitment to F90 as the
principal programming language has resulted in successful simulations of casting processes
on a long and varied list of computing platforms.
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3.2 Implementation via Object-Based Fortran 90

Programming languages are generaIty considered to be object-oriented (00) if constructs
are provided to support data abstraction , information hiding, inheritante, and tem-
plates [14]. F90 explicitly provides for the expression of data abstraction and informa-
tion hiding, and indirectly allows for some aspects of inheritance and templates. In this
regard, F90 might more appropriateely be considered an object-based (OB ) or function-
ally object-oriented (F/00) language [14, 22]. We are currently finding useful many new
features offered by F90: free-form source, concise array syntax, portable constructs for pre-
cision (kind numbers), data abstraction with derived types, modules and their associated
information hiding, argument checking via module procedures and interface blocks, poly-
morphism via generic procedures, pointered and allocat able variables, and a rich variety of
powerful intrinsic. By remaining active in the Fortran programming community, we are
confident we will impact the changes, improvements, and additions that will (and should)
occur as F90 evolves toward F95 and F2K.

3.3 Team Software Development Practices

Each team member is responsible for one or more modules, defined as a procedure or
set of procedures that performs some specific task. Each module has a static and well-
defined purpose and interface. This approach allows parallel and independent module
development that is not obtrusive to other modules, and is standard practice in many
successful commercial software endeavors [15]. Our modules tend to be arranged according
to their functionality (e.g., a phase change module, a fluid flow module, etc.), not their
data (as in many 00 projects), hence the overall design strategy is F/00.

The Telluride modules are constructed with one or more F90 modules, each containing
one or more module procedures. The F90 modules are defaulted private, i.e., only the
input and output are accessible (public) to the outside world (calling procedure). By
containing procedures within modules, they can be hidden, their calling arguments can be
optional and/or checked by the compiler, and polymorphism (via generic procedures) can
be exploited. By using well-defined interfaces, data structures within modules can change
without prior approval horn the calbg procedure.

Daily functions of the software development team responsible for the design and
implementation of Telluride and related modules (JTpack90, PGSLib) are coordinated
according to published proven practices [15]. Our software (currently numbering w50K
lines of source code) is maintained with the concurrent versions system (CVS)l. We do
not have a principal “code librarian” , i.e., all team members are encouraged to commit
modifications to the central source code repository on a regular basis. CVS enables easy
extraction of prior versions, and maintains an “audit trial” of the software evolution.

3.4 Example: Mesh Connectivity and Cell Geometry Data Structures

We define parameters for kind numbers (essential for portability) and mesh attributes,

! ndim - physical dimensions; nfc - faces per cell; nvc - vertices per cell
integer,. para??eter :: int_k-ind= K-lND(1), reztl-kimd= KIWI ( l-. O“do-)

integer(int_ki.nd), parameter :: nciim= 3, nfc = 6, nvc = 8

which enable each Telluride cell to be considered a logical cube. By allowingcellface

verticesto coincideinphysicalspace,thislogicalcube definitionsupportsallrelevant3-D

lSee www. loria. f r/Nmolli/cvs-index .html for further information on CVS.
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cell types (hex, tet, prism, or pyramid) without cell-specific source code. Given the above
parameters, a MESH-CONNECTIVITYderived type is defined for each cell.:

type MESH.CONNECTIVITY

integer(int_k,i.nd),dimension(nfc) ::

integer(int_kind), dimension(nvc) ::

integer(int.kind) ::

end type MESH_CONNECTIVITY

Here,forexample,components Ngbr-Cell(f)

Ngbr_Cell, Ngbr_Face

Ngbr_Vrtx

Ngbr_PE_Flag

and Ngbr_Face(f) storethe celland face

numbers, respectively, across face f of the reference cell. We also define, for each cell, a
CELL-GEOMETRY derivedtype,

type CELL_GEOMETRY

real(real_kind), dimension(ndim,nfc) :: Face_Normal, Face_Centroid

real(real_kind), dimension(nfc) :: Face_Area, Halfwidth

real(real_kind), dimension(ndim) :: Centroi.d

real(real_kind) :: Volume

end type CELL_GEOMETRY

which storesallphysicalcellgeometry information.Arrays of thesederivedtypes are

then declared,which arepointeredso theirsize(ncells)canbe determinedand allocated

dynamicallyat executiontime. Once allocated,arraysyntaxisused forconcisenessand

readability,e.g.,CellxVolume representsthecellvolume array.One drawback ofthisdata

structureisthat adjacentceilfaceinformationisstoredredundantly.Many of our data

structurechoiceshave placedmore importanceofconciseness,minimal indirectaddressing,

and efficientparallelismratherthan minimal memory usage.

4 Parallelization Strategy

Ourparallelization strategy is quite simple: explicitly decompose anddistribute the global
Telluride mesh across all processors available to perform work on the problem at hand.
This strategy is independent of the processor’s direct memory access capabilities: local
(distributed memory systems) or global (shared memory systems). We have therefore
chosen to explicitly program for parallelism, rather than relying upon parallelism via
compiler directives (as in High Performance Fortran2) or parallelism switches. Explicit
parallelism demands greater initial software design and development, but results in more
portable and efficiently parallelized software.

We have designed parallelism into our software by separating all communication from
computation, then parallelizing the communication via the explicit passing of messages
between processors. Message passing, accomplished by calls to the MPI library [8], is
necessary when the requested data does not reside in local memory owned by the current
processor. For the unstructured meshes utilized by Telluride, indirect addressing is
required to retrieve neighboring cell information. For example, the following code

FACE_LOOP: do f = 1,nfc
~~~~_JfJ~p~u-J_~_= ~;meii~-

Neighbor_Volume(f,i) = Cell(Mesh(i)xNgbr_Cell(f))XVolume

end do CELL_LOOP

end do FACE_LOOP

2SeeWWW,crpc.rice,edu/HPFF/home,htnd forfurtiherinformationonHPF.
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returns in array Neighbor_Volume the volume of cell (face) neighbors. This information
will not be available to the processor o-wning cell i if the data for the face neighbor f of cell
i resides on another processor. The needed data must first be retrieved from all relevant
processors into a local buffer.

Explicit parallelism of this gather operation is accomplished as follows: buffers to hold
the incoming and outgoing off-processor data are first allocated; outgoing buffer data is then
assimilated and sent; off-processor data is received into the incoming buffer; and, finally,
the data is gathered from either the incoming buffer or the original source array. Rather
than inserting these constructs wherever indirect addressing operations are needed, we have
replaced them with calls to various gather/scatter module procedures. For example, the
loop above now becomes:

use gs_module, only: EE_GATHER

call EE_GATHER (Neighbor.Volume, Cell~Volume, Mesh)

where EE_GATHERis a generic module procedure (in gs module) that performs all the nec-
essary indirect addressing and message passing functions required to gather CellXVolume
data and return it in Nei.ghbor-Volume.

By invoking gather/scatter module procedures, platform-specific explicit parallelism
(message passing) is effectively hidden, instead of being littered throughout the entire
source. Communication is also decoupled from all loops performing real computation,
which allows compiler optimization to efficiently fuse large code blocks. The principal
drawback to this approach is the local allocation of temporary “container arrays” required
to hold the output returned by the gather/scatter procedures. We have traded memory in
return for modular, portable, and efficient parallelization and computation loops that can
be highly optimized.

4.1 Gather/Scatter Modules

To iUustrate the functionality of our gather/scatter modules, consider the example source
code below, taken from our current gather module. First, we define an EE–GATHERgeneric
procedure that allows the host application to gather scalar or vector data that is of type
integer, logical and single/double precision real. This polymorphkn allows the applications
programmer to use only the EE_GATHERcalling protocol, regardless of the data being
gathered. Consider the GATHERDOUBLEmodule procedure below, which gathers double
precision real scalar data from array Src into array Dest:

SUBROUTINE GATHER_DOUBLE (Dest, Src, Mesh)

implicit none

real(double.kind) , dimension(:,:), intent(OUT) :: Dest

type(MESH_CONNECTIVITY) , dimension(SIZE(Dest ,2)), intent(IN) :: Mesh

real (double_ kind) , dimension(:) ,
integer (int.ki.nd) :: c, f
FACE_LOOP: do f = 1,SIZE(Dest, 1)

Dest(f,:) = Src (MeshtiNgbr_cell (f ) )
end do FACE_LOOP
return

ENDSUBROUTINEGATHER_DOUBLE

This simple procedure is merely a wrapper around
the NEIGHBOR_VOLUMEloop above, If the memory is

intent (IN) :: Src

the indirect addressing code shown in
distributed across processors, however,
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explicit parallelization of this procedure is not trivial. Parallel versions of our gather/scatter
procedures rely upon PGSLib to do the interprocessor communication, as shown next.

4.2 Parallel Gather/Scatter with PGSLib [7]

An explicitly parallel version of the GATHERDOUBLEmodule procedure above now becomes:

BUFFER.CELLS : do C = 1, Trace~N_Duplicate

BUFFER_FACES: do f = 1, SIZE(Src,I.)

Comm_Buffer(f,c) = Src(f,Trace%Duplicate_Indices(c))

end do BUFFER_FACES

end do BUFFER_CELLS

call PGSLIB_GATHER_BUFFER (Off_Buffer, Comm_Buffer, Trace)

CELL_LOOP: do c = 1, SIZE(Dest,2)

FACE_LOOP: do f = 1, SIZE(Dest,l)

if (BTEST(Mesh(c)%Ngbr_PE_Flag, CllNgbr%Bit(f))) then

Dest(f,c) = Src(Mesh(c)%Ngbr_Face(f), Mesh(c)~Ngbr_Cell(f))

else

Dest(f,c) = Off_Buffer(Mesh(c)%Ngbr_Face(f) , Mesh(c)%Ngbr_Cell(f))

end if

end do FACE_LOOP

end do CELL_LOOP

The only difference between this parallel gather operation relative to the previous serial
example is that the gather must access a different buffer (Off_Buffer) if the requested
information is off-processor. Before this operation can be performed, however, the off-
processor data must be assimilated and communicated between processors, which is the
purpose of the first loop and PGSLib call. MPI-based message passing occurs inside the
PGSLibcall.

5 Parallel Linear Solutions with JTpack90 [21]

Our implicit Navier-Stokesandheattransfer/solidification algorithms require the solution
of linear systems of equations. A given time step in Telluride can require several matrix
solutions, so the majority ofour solution algorithm is spent in the JTpack90 linear solver
library [21]. This library is written in object-based F90, and is also explicitly parallelized
via calls to gather/scatter modules that rely on PGSLib [7] to perform the message
passing. Telluride interfaces to JTpack90 by linking to its library and ’’using” itsmodule
information files.

We currently solve our systems in parallel over the entire mesh, rather than invoking
a Schwarz decomposition [2]. For orthogon~ meshes, we store the matrix and use
preconditioned CG to solve the system. For generaLly nonorthogonal, unstructured meshes,
we do not storethe matrix and use preconditionedGMRES to solvethe system. In all

cases,we interfacewith JTpack90 in matrix-free form, i.e., matrix-vector multiplication
is performed with procedures provided by Telluride. All matrix-vector multiplications are
therefore performed in Telluride, enabling control over indirect addressing (hence their
parallelization). This also avoids having to assimilate and store the matrix, which for
a general unstructured mesh is often intractable, especially for our current least-squares
Laplacian operator [1].
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TABLE 1

Chalice solidification parallelefficiencieson a shared memory system.’

EProcessors
1
2
4
8

CPU Time
(ps/cell/cycle)

5013
2169
1237
721

Efficiency
1.00
1.15
1.03
0.87

“300 MHz Digital AlphaServer 8400

We have found preconditioning the GMRES solution of our least-squares Laplacian
operator with a low-order operator (one that assumes the mesh to be orthogonal and simply-
connected) to be quite effective. We have additionally found that solving the preconditioned
equation with a loosely-converged CG algorithm yields an order of magnit ude speedup over
more traditional preconditioning alternatives.

6 Numerical Example: Copper Chalice Solidification

We now present evidence for the excellent parallel efficiencies realized in a real-world
Telluride casting simulation of the cooling and solidification of a copper “chalice”. The
simulation is performed on a multi-processor shared memory3 system. The interested reader
should also consult reference [21] for additional parallel efficiencies obtained for Telluride
implicit heat conduction simulations on both shared and distributed memory systems.

The copper chalice was cast at a LANL foundry in support of the inertial confinement
fusion program. It is essentially a hemispherical shell (two inch diameter) gated at its pole
with a cylindrical “hot top”. The hot top serves to continuously supply liquid copper to the
hemispherical shell during fi.Uing/solidification (to avoid shrinkage defects). The hot top is
then cut away and machined after solidification to give the final product (the hemispherical
shell).

To date, two single-processor chalice simulations have been performed: (1) isothermal
filling of the mold cavity (neglecting heat transfer), and (2) cooling/solidifying of the
quiescent liquid copper subsequent to fill. One quadrant of the full geometry is simulated,
with the geometric model and computational mesh (6480 unstructured hex elements) being
generated with the I-DEAS commercial software package. Space unfortunately does not
permit including any chalice simulation results, so the reader is encouraged to consult the
Telluride home page4 for graphical results (including animations).

A higher-resolution result (46,386-cell quadrant) is easily achieved with a parallel chalice
simulation. Using the Chaco [9] decomposition software, we decompose the mesh into
an arbitrary number of submeshes, depending upon the number of processors available
to do the problem (see [21] for a mesh decomposition example). As Table 1 indicates,
excellent parallel efficiencies are realized for this simulation, which is a good example of
the type of parallel casting simulation Telluride must perform efficiently (as opposed to
an idealized heat conduction problem [21]). Based on these preliminary results, we expect
high performance for our parallel unstructured mesh casting simulations provided we make
use of intelligent mesh decomposition algorithms [9, 10]. We expect further performance

3300 MHz Digital AlphaServer 8400 (see www.dec. coM/ inf o/alphaserver/products .html)

4http: //gnarly. lanl. gov/Telluride/Telluri.de. html
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improvements to result from additional single-processor optimization and the load balancing
of localized models such as interface tracking and phase change.
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